
Abstract

The HCL Compass release supports enhanced security for Compass authenticated users.

Compasscan now limit the number of login attempts for a user before the user becomes locked

out. Compass can also limit the number login attempts from a host connecting through

CompassWeb.

Content

These enhancements provide protection for Compassdatabases against brute-force password

attacks. If an attacker is trying to determine the password of a particular user, they might send

many login attempts with different username and password combinations until they find one that

works. To protect against this Compasscan lock out a user or a host if a certain number of failed

attempts have occurred. When a user or host locks out, the login error message is the same as if

they entered an incorrect username and password. This prevents the attacker from seeing that any

subsequent attempts will fail, causing them to waste resources on a continued fruitless attack.

This severely limits the ability of an attacker to succeed in guessing the password.

When a user account is locked out, any subsequent login attempts for that user will be denied

until the account lockout is removed by a user administrator. Any additional failed login attempts

for this or any other user could result in the host eventually locking out. If the host is locked out

then any login from that host will fail, but it will not cause any additional account lockouts. This

limits the ability of an attacker from maliciously locking out many users.

The host lockout also limits the ability of an attacker to burden the system with a flood of login

attempts. Once a host locks out after a certain number of failed attempts, Compasswill not allow

any logins from that host. Fewer resources are consumed for any login attempts from locked out

hosts. This prevents the attack from consuming too many resources, allowing legitimate use of

the system even while an attack is underway.

This new feature is useful for deployments that have accounts that are not LDAP authenticated.

Only ClearQuest-authenticated users are protected with this feature. For Compassusers that are

LDAP authenticated, the LDAP server can be configured to enable account lockouts. The new

lockout features introduced in this version are not meant to be a complete replacement for LDAP

authentication. LDAP still provides many security capabilities that Compassdoes not have, such

as minimum password complexity and maximum password age. LDAP authentication is also

useful for managing identity in a common location. If you need those capabilities, you should

continue to use LDAP authentication. If you have accounts that are not protected by LDAP, this

feature will protect those accounts.

This feature is available for use in databases using at least Feature Level 9 (FL9). Note that once

a database is upgraded to Feature Level 9, versions of Compassprior to 8.0.1.6 will not be able

to login to the Compassdatabase. Feature Level prevention of down-rev client login remains as

before, and is independent of this feature.

Configuring Brute Force Protection

The default configuration of Compassis that lockouts are disabled. You must configure it using

the installutil loginsecurity command described below. To set loginsecurity configuration, a user

needs Security Administrator privileges.

Login security is configured using the loginsecurity command. The syntax is as follows:

Usage: installutil loginsecurity

dbset_name (use empty quotes as default)

cq_login

cq_password

[-secret secret]

{-set {[-file configfileIn] [-setsecret new_secret]} | [-remove]} |

{-get [-file configfileOut]}

When setting the configuration you use the -set argument. You set lockout configuration using a

file with the configuration options in them. Specify this file using the -file argument. There is

also a secret word you can set that can be used if you are a Security Administrator and you are

locked out. You would need this secret word and valid login credentials to remove the lockout on

yourself. See the section below for removing lockout on yourself. An example configuration file

is as follows:

Comments are preceded by '#' and are ignored.

This enables lockouts

lockout_enable 1

Host lockout configuration

This sets the HOST lockout threshold to 10 tries

lockout_threshold HOST 10

This sets the HOST reset period to 60 seconds.

lockout_reset HOST 60

User lockout configuration

This sets the USER lockout threshold to 10 tries

lockout_threshold USER 10

This sets the USER reset period to 60 seconds.

lockout_reset USER 60

Whitelist / blacklists

lockout_whitelist HOST whitelisthost

lockout_whitelist USER whitelistuser1, whitelistuser

lockout_blacklist HOST blacklisthost3

lockout_blacklist USER bl_user1

lockout_blacklist USER bl_user2,bl_user3

Login attempt table cleanup

This says to cleanup any failed login attempts older

than one day (60s/m * 60m/hr * 24hr/day), and only

in about 1 in 20 login attempts (5%).

login_cleanup_age 8640000

login_cleanup_probability 5

Lockouts are enabled by the first line. Specifying a 1 enables lockouts and 0 disables them. The

rest of the options have no effect if lockouts are disabled, but you can still include them in the

configuration. If you decide to re-enable the lockouts you can just save the configuration to a

file, change the value to 1 in the saved file and then set the configuration again with this edited

file. The configuration file can include comments. Comments must be on their own line and the

line must begin with “#”. Blank lines are ignored. More details about the configuration options

are given in the Maintaining Brute Force Protection section.

You can specify both configuration file and secret in the same command, or you can specify

them separately. This may be useful if you want to change the configuration but not the secret

word.

You can remove the configuration and secret word by using the -set and -remove arguments. The

configuration and secret word are completely removed from the database. If you want to keep a

copy of the configuration you should first get it using the -get option, as described next.

Removing the configuration does not remove any existing lockouts, but login security is disabled

once the configuration is removed. The lockouts will not have any effect until login security is

enabled again.

You use the same installutil command to get the configuration. Instead of using the -set argument

you use the -get argument. If you specify the -file argument then the configuration is written to

the specified file. If you don't specify a -file argument then the configuration is written to the

console.

The output of this command merely indicates whether a secret word has been set or not, it does

not say what the word actually is. Once you set the secret word, it can not be obtained from the

database. The secret word is not actually stored in the database as-is. Instead, a one-way hash of

it is stored in the database, and thus it cannot be retrieved. The admin must not forget this secret

word or they will not be able to self-unlock their accounts.

The brute-force protection is configured only at the working-master but the protection works on

a site-by-site basis. That is, you set the configuration on the master site, then replicate the

configuration to the other sites using normal MultiSite synchronization. To ensure that accounts

lock out quickly on sites being attacked, each site maintains its own list of lockouts. While this

may allow an attacker additional login attempts to different sites, it is still difficult for the

attacker to determine that an account or host is locked out, and typically the number of additional

sites is small.

Note: Do not run the loginsecurity -set command on any site other than the working master. If

you accidentally do this, then remove the configuration on the same site, using -set -remove and

replicate the changes to all databases. Then set the configuration on the master.

Maintaining Brute Force Protection

Once the login security is enabled and configured, there are commands the administrator will use

to look for lockouts and remove them. To find and remove lockouts, a user needs User

Administrator privileges. Knowing which accounts are locked out is the first step. The following

examples assume that the user running the command is a User Administrator.

Getting lockouts

To get a list of lockouts in the database, use the installutil getlockouts command.

Usage: installutil getlockouts

dbset_name (use empty quotes as default)

cq_login

cq_password

[-secret secret]

[-type {ANY|LOGIN|HOST}]

[-match param]

[-max maxItems]

The first three arguments are self-explanatory. The -type is used to specify which type of lockout

to list. You can specify that you want to see lockouts only for users (USER) or lockouts only for

hosts (HOST). By default, the ANY option is chosen, which lists both users and hosts. You can

limit the number of lockouts listed to make it easier to read using the -max option. By default,

there is no limit to the number of lockouts listed.

If you only want the user lockouts then specify “-type USER”, for example:

installutil getlockouts mydbset admin admin_pwd -type USER

If you want to see if userA is locked out, you would specify both the “-type USER” and “-match

userA”, for example:

installutil getlockouts mydbset admin admin_pwd -type USER -match userA

The command lists lockouts that match exactly and completely. For example, you cannot match

by partial username. The following command would not show if userA was locked out:

installutil getlockouts mydbset admin admin_pwd -type USER -match user

The output is sorted by the USER name or HOST name. When both USER and HOST lockouts

are listed, first USER lockouts are listed, and then HOST lockouts are listed. If the "-max"

argument is used, then it is possible that not all lockouts will be shown. It will only list as many

lockouts as you specify in that option.

Getting lockouts if you are locked out

If you are already locked out, then when you run the installutil getlockouts command, it

will fail with invalid credentials. You must supply the secret word specified during configuration

using the “-secret” argument along with valid Compass credentials. The lockout is temporarily

bypassed just for the purpose of this command. This allows a locked out user administrator to

query the lockouts and remove them.
installutil getlockouts mydbset admin admin_pwd -secret my_secret -type USER

-match admin

Removing lockouts

Once you know what is locked out, you can start removing lockouts. Remove lockouts using the

installutil removelockouts command. The syntax of this command is as follows:

Usage: installutil removelockouts

dbset_name (use empty quotes as default)

cq_login

cq_password

[-secret secret]

[-type {ANY|USER|HOST}]

[-match param]

The syntax is very similar to the getlockouts command. Any lockouts returned by the

getlockouts command would be removed if you used the same arguments for the removelockouts

command. Once the lockout is removed, the user or host has the full number of attempts before

the user or host identified by the parameter locks out again. Here are some examples:

If you want to remove all USER lockouts then specify “-type USER”, for example:

installutil removelockouts mydbset admin admin_pwd -type USER

If you want to remove only the lockout for userA, you would specify both the “-type USER” and

“-match userA”, for example:

installutil removelockouts mydbset admin admin_pwd -type USER -match userA

The command removes lockouts that match exactly and completely. For example, you cannot

remove lockouts by partial username. The following command would not remove the lockout on

userA:

installutil removelockouts mydbset admin admin_pwd -type USER -match user

Removing lockout on self

If you are locked out, due to an attack or user error, the lockout on your account can only be

removed if you supply a valid -secret argument, just as you did with getlockouts. Without this

argument, the command will fail with an 'invalid credentials' error. For example:

installutil removelockouts dbset_name admin admin_pwd -secret my_secret -type

USER -match admin

Listing login attempts

To get a list of failed login attempts, use the installutil getloginattempts command.

Usage: installutil getloginattempts

dbset_name (use empty quotes as default)

cq_login

cq_password

[-secret secret]

[-type {ANY|LOGIN|HOST}]

[-match param]

[-max maxItems]

This command will list any failed login attempts. The arguments are similar to the installutil

getlockouts command. The attempts are listed from oldest to newest. For each failed login

attempt, a USER value is logged. For Web, and OSLC APIs, a HOST is also logged, so each

failed login may provide two lines of output, one for USER, and one for HOST. Included in the

output of this command is date when the login attempt occurred, the type of the parmeter that

was used (e.g. "USER" or "HOST") and the actual parameter used (e.g. "bob").

Administrators may use this to monitor failed login attempts for the Compass database. The

output may be used to identify hosts that are being used to mount attacks, which should be added

to the host blacklist. It may also reveal that attacks are under way on particular accounts that

might be sensitive. Steps could then be taken to ensure that the accounts are properly secured.

The login attempts are listed from oldest to newest. If the "-max" argument is used to limit the

number of login attempts printed, then the newest login attempts might not be shown. Login

attempts are periodically removed from the system. See Cleaning up the login attempts.

Note: The installutil getlockouts was added in 8.0.1.6.

Brute-force protection scenarios

The system uses the configuration options to govern how it protects from brute force attacks.

Brute force attacks are characterized by a malicious agent attempting to quickly login many

times with different username and password combinations in an attempt to find one that works.

Lockouts occur when the system detects that the threshold for failed login attempts has been

reached for a particular parameter. Two kinds of parameters can lockout independently, the

username and the host. More details are given in the following scenarios.

Malicious attacks on one user account – non-web clients

Malicious agents may target a single account on the system, rapidly trying many possible

passwords. The system locks out this account once a certain number of failed attempts have

occurred. The threshold is specified by the lockout_threshold option in the configuration file.

This is followed by either the word “USER” or “HOST” to specify which parameter type to lock

out. To cause a user lockout after 10 failed attempts you would use this configuration option:

lockout_threshold USER 10

Once the threshold has been reached, the account is locked out. Even if the correct credentials

are supplied, it will still fail with a generic “invalid credentials” error. There is no specific

indication given that the account is actually locked out. This is important, to avoid revealing any

information about the validity of the credentials or whether the account is locked out.

These attacks may occur either by a person manually entering the user password in the Compass

client (either Eclipse or Windows client), or using a CQPerl or VisualBasic script and the APIs

to try many different passwords for a user.

Malicious attacks via Compass Web, OSLC, or ClearCase Integrations through the web

Another form of attack is where a malicious agent attempts to use Compass Web, OSLC, or

ClearCase integrations through the web to login to many different users from a single host. They

may do this because they know accounts will lock out and seek to try as many

username/password combinations as possible, or to simply cause a denial-of-service type attack,

trying to lock out as many users as possible. The system can protect against this by locking out

the host after a certain number of failed attempts. This is configured using the following line in

the configuration options:

lockout_threshold HOST 50

This tells the system to lockout a host if it has failed 50 login attempts. Any subsequent attempts

will always fail with a generic “invalid credentials”. Furthermore, no user accounts will get

locked out from login attempts from this host.

Note that the host lockout only occurs for login attempts via Compass Web or the OSLC

interface or for ClearCase integrations that connect through Compass Web.

Denial-of-service mitigation and user-error mitigation

Any system of brute-force protection via lockouts is susceptible to denial-of-service attacks as

the attacker may purposely attempt to lock out important users and hosts. It is also possible for

users to accidentally lock themselves out by repeatedly using the wrong password. This adds

administrative overhead as an administrator must take the time to periodically find and remove

lockouts on valid users. There are several built-in mitigations to reduce the potential disruption

for these kinds of attacks and user errors. These include an automatic lockout reset capability and

whitelist/blacklist for hosts and users.

To reduce the potential for denial-of-service attacks caused by a malicious agent intentionally

causing lockouts, the system allows lockouts to automatically reset. It is important to note that

there is a difference between automatically resetting the lockout and removing the lockout via

the installutil removelockouts command. The former (reset) simply allows one more attempt

before locking out again. The second (removal) completely removes the lockout and allows the

full number of retries before locking out again.

The automatic lockout resets are mainly effective against denial-of-service attacks when the

HOST lockout is configured in addition to the USER lockouts. The idea is that once the HOST

locks out, then any subsequent login attempts from that host will no longer cause USER

lockouts. For this to work, the HOST must remain locked out so that the username will

automatically reset once the configured reset period has elapsed. An example configuration for

this is given in the next section.

In addition to denial-of-service mitigation, the automatic resets also reduce the amount of

administration needed to respond to user errors. If a user is accidentally locked out due to too

many failed attempts, they only would need to wait for the reset period to elapse before trying

again. They would not have to contact support unless they truly forgot their credentials and need

a password reset.

Lockout Reset Period

The login security can be configured to automatically reset a lockout after a certain amount of

time has passed where no log in attempts have been made for that login parameter. This can be

configured using the following line:

lockout_reset USER 60

This line configures the lockout reset period for USER parameters to 60 seconds. This can be

thought of as a cooling-off period that allows the lockouts to automatically reset without

administrative intervention. Once 60 seconds have passed and there have been no additional

login attempts for the locked out parameter, the lockout expires and the user can make one more

attempt. If that attempt fails, then the parameter locks out again. The user can try again in 60

seconds, ad-infinitum. If there is no lockout_reset line for the parameter type then there is no

automatic reset. You can also specify a value of 0 which would explicitly disable the reset.

For an effective defense against denial-of-service attack causing lockouts on users, set the HOST

reset period to a value higher than the USER reset period (or disabling automatic reset for

HOST). This allows the USER lockout to be reset while the attacking HOST remains locked out.

Remember, when a host is locked out, then any subsequent login attempts will not cause or

prolong any user lockouts. Then the user can log in with valid credentials to remove the lockout.

An attacker could circumvent this by mounting an attack from a different HOST (or proxy), but

that may lock out eventually as well.

Here is an example configuration that would do this. The HOST locks out after 10 tries and

remains locked out for 60 minutes. The USER locks out after 3 tries, but it resets within 1

minute. Once the USER lockout expires, the HOST lockout persists, since the reset period is

longer. This prevents that host from causing future lockouts, giving the rightful user a chance to

login and clear the lockout.

lockout_threshold HOST 10

lockout_reset HOST 3600

lockout_threshold USER 10

lockout_reset USER 60

Increasing Lockout Reset Period

If a constant reset period does not provide enough disincentive for the brute-force attack, the

administrator can configure an increasing reset period. This is done by passing a negative

number in the configuration, as follows:

lockout_reset HOST -60

When the first lockout on the HOST parameter occurs, it waits 60 seconds before resetting the

lockout. If, after the reset period another failed attempt occurs, the new reset period is 120

seconds. Each subsequent reset period is a multiple of the absolute value provided in the

configuration (e.g., 180 seconds, 240 sections, 300 seconds, ...).

Once a user or host is locked out, the user or anyone using the host must wait for the lockout to

reset automatically or for the user administrator to remove it. If the lockout automatically resets,

the person has one more try before the parameter locks out again, as described above. If, after the

lockout resets, the user successfully logs in, then the lockout is completely removed (as if the

administrator ran installutil removelockout).

Blacklists

If an attacker consistently mounts denial-of-service or brute-force attacks via a group of hosts or

proxy servers, these hosts can be added to a blacklist. Any incoming request from a blacklisted

host will fail as if the host is locked out. It will simply fail with invalid credentials, and it will not

cause any additional user lockouts. A blacklisted host consumes less database, CPU, and

memory resources during the login attempt, reducing the ability of an attacker to mount an

effective resource-based denial-of-service campaign.

A blacklist is a list of users or IP addresses that will be prevented from logging in. If a USER or

HOST is in the blacklist then Compass does not even attempt to authenticate the user

credentials. A blacklist is specified in the configuration file that is set with the installutil

loginsecurity command. The relevant configuration lines look like this:

lockout_blacklist HOST blacklisthost3

lockout_blacklist USER bl_user1

lockout_blacklist USER bl_user2,bl_user3

The lines can specify either HOST or USER blacklist values and you can specify multiple

comma-separated values. Note, if a USER or HOST value is in the blacklist then the login

attempt is not even recorded. This is to prevent database resources from being consumed by the

blacklisted login attempts. The host must be specified as an IP address. Currently, only Compass

Web, OSLC, and VersionVault integrations through Compass Web will log host addresses

during failed login attempts. These are the only connections that will lockout host addresses.

An administrator can use the installutil getloginattempts command to get a list of failed

login attempts. From that list the administrator can determine whether an attack is underway

from a particular host, and then add that host to the blacklist.

Whitelists

There might be a HOST or a USER that should never be locked out. It may be so important that

these never lockout that it is worth accepting the risk of an attacker breaking into this account

using brute-force methods, or mounting a denial-of-service attack via a whitelisted host or user.

Suppose you have an important service account. The account does not have any admin privileges

but it can perform certain specific, regular, and important tasks defined for that service user. To

prevent the account from being locked out, which would prevent the important regular tasks

from being completed, the username could be added to a USER whitelist. Any username on the

USER whitelist would never be locked out no matter how many attempts were made. It is

therefore important that a suitably strong password be used for this account, and that it be

changed regularly.

An example of a HOST that should never be locked out might be an important proxy server used

by Compass Web users to login to ClearQuest. When connecting to Compass Web servers

using a proxy server, Compass sees the requests as coming from the proxy-server rather than the

actual location of the browser client. If an attacker mounts an attack through the proxy he can

effectively cause a denial-of-attack by locking out the proxy server and preventing all users who

use that proxy server from connecting. To prevent this proxy server from being locked out the

customer can put the proxy server on a HOST whitelist.

While the whitelisted values never lock out, the other parameter in the failed login attempt is still

logged if it is not also in a whitelist. For example, if the user is in a whitelist but the host is not,

then the failed login attempt is still logged for the host. This allows some protection in spite of

the whitelisted login parameters.

Whitelist values are specified in the configuration file, just like blacklists. Here are some

examples:

lockout_whitelist HOST whitelisthost

lockout_whitelist USER whitelistuser1, whitelistuser

The hosts must be specified as an IP address. Currently, the HOST is only used by Compass

Web, OSLC, and ClearCase integrations through Compass Web connections.

Reference of login security configuration options

A reference for configuration options follows.

Enabling lockouts

lockout_enable {0|1}

Enable or disable lockouts. Use 0 to disable or 1 to enable lockouts.

To disable lockouts:
lockout_enable 0

To enable lockouts:
lockout_enable 1

Setting lockout thresholds

lockout_threshold {USER|HOST} {threshold}

Specifies how many failed login attempts should occur before a parameter locks out.

To lockout users after 5 attempts:
lockout_threshold USER 5

To lockout hosts after 10 attempts:
lockout_threshold HOST 10

Automatic Lockout Resets

lockout_reset {USER|HOST} {reset_period_in_seconds}

Specifies how long until a lockout automatically resets, allowing one more login attempt before

locking out. The reset period is specified in seconds. The reset happens the next time the user or

host is used during the login after the reset period has elapsed.

To reset USER lockouts after 60 seconds:
lockout_reset USER 60

To reset HOST lockouts after 10 minutes:
lockout_reset HOST 600

To reset HOST lockouts after 60 seconds after first lockout, then 120 seconds after second

lockout, then 180 seconds after third lockout, etc. The reset period starts again at 60 seconds

after a successful login or after the lockout is removed.
lockout_reset HOST -60

Note: The installutil getlockouts command will continue to show that the parameter is locked out

past the reset period. This is expected since the reset actually occurs on the next successful login

with that user or host after the reset period has elapsed.

Adding to a whitelist or blacklist

You can add users or hosts to a whitelist or blacklist. A whitelist value never locks out, but

during a failed login attempt that uses a whitelist value, a non-whitelist value may get locked out.

For example, suppose BOB is on the USER whitelist. If a failed login attempt occurs from the

host with IP address W.X.Y.Z, and this host is not on the HOST whitelist, then a failed login

attempt will be logged for HOST W.X.Y.Z, but not for the username BOB.

If a value is on a blacklists, the failed login is not logged (in order to prevent an attack from

consuming database space) but it still behaves as it it was locked out. This prevents any lockout

on values not in the blacklist. For example, suppose host W.X.Y.Z is on the blacklist but JOE is

not. If a failed login attempt comes from W.X.Y.Z, it will not contribute to a lockout of JOE.

The configuration for whitelist or blacklist is one or more lines like this:

lockout_whitelist {USER|HOST} value1[,value2[,value3[,...]]]

lockout_blacklist {USER|HOST} value1[,value2[,value3[,...]]]

Multiple lockout_whitelist or lockout_blacklist lines may exist in the configuration, making it

easier to organize this file. Values must be comma separated and white space is ignored.

Cleaning up the login attempts

Failed login attempts are stored in the Compass master database. Over time this list may grow

very large. You should configure Compass to automatically clean up this list, removing the

record of attempts that are no longer needed. You configure this by specifying two values. The

first value is how old (in seconds) the record of a login attempt must be before it can be removed.

The second value is the probability that any given login should do the cleanup. The cleanup will

happen during a successful login, and the probability that the cleanup will happen is specified by

login_cleanup_probability. For example if you specify 600 for login_cleanup_age and 5 for

login_cleanup_probability, then cleanup will happen roughly once for every 20 logins and it will

remove the records for any attempts that are older than 10 minutes. If you specify 100 for

login_cleanup_probability then cleanup happens on every login. If you specify 0 then cleanup

never happens. The default value for login_cleanup_probability is 1 (1%). The default value for

login_cleanup_age is one day.

login_cleanup_age {age_to_cleanup_in_seconds}

login_cleanup_probability {percent_chance_that_cleanup_will_occur}

Note – there is no way to view the failed login attempts except by connecting to your database

directly and running an SQL query. This capability may be added to installutil in a future release.

Multisite and Login Security

Configuration of login security is made on the working master for a multisite family of

databases. This is automatically replicated to all the databases with normal MultiSite

synchronization. Each site separately keeps track of login attempts and lockouts and these are not

replicated between databases.

